FAVOURABLE MODULES: FILTRATIONS, POLYTOPES, NEWTON–OKOUNKOV BODIES AND FLAT DEGENERATIONS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filtrations of smooth principal series and Iwasawa modules

Let $G$ be a reductive $p$-adic group‎. ‎We consider the general question‎ ‎of whether the reducibility of an induced representation can be detected in a‎ ‎``co-rank one‎" ‎situation‎. ‎For smooth complex representations induced from supercuspidal‎ ‎representations‎, ‎we show that a sufficient condition is the existence of a subquotient‎ ‎that does not appear as a subrepresentation‎. ‎An import...

متن کامل

Finite Filtrations of Modules and Shellable Multicomplexes

We introduce pretty clean modules, extending the notion of clean modules by Dress, and show that pretty clean modules are sequentially CohenMacaulay. We also extend a theorem of Dress on shellable simplicial complexes to multicomplexes.

متن کامل

Periodic Flat Modules, and Flat Modules for Finite Groups

If R is a ring of coefficients and G a finite group, then a flat RG-module which is projective as an R-module is necessarily projective as an RG-module. More generally, if H is a subgroup of finite index in an arbitrary group Γ, then a flat RΓmodule which is projective as an RH-module is necessarily projective as an RΓ-module. This follows from a generalization of the first theorem to modules o...

متن کامل

Canonical Filtrations of Gorenstein Injective Modules

The principle “Every result in classical homological algebra should have a counterpart in Gorenstein homological algebra” was given by Henrik Holm. There is a remarkable body of evidence supporting this claim. Perhaps one of the most glaring exceptions is provided by the fact that tensor products of Gorenstein projective modules need not be Gorenstein projective, even over Gorenstein rings. So ...

متن کامل

Non-Flat Regular Polytopes and Restrictions on Chiral Polytopes

An abstract polytope is flat if every facet is incident on every vertex. In this paper, we prove that no chiral polytope has flat finite regular facets and finite regular vertex-figures. We then determine the three smallest non-flat regular polytopes in each rank, and use this to show that for n > 8, a chiral n-polytope has at least 48(n− 2)(n− 2)! flags.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transformation Groups

سال: 2016

ISSN: 1083-4362,1531-586X

DOI: 10.1007/s00031-016-9389-2